88 research outputs found

    Flipped classroom teaching methods in medical education

    Full text link
    BACKGROUND: Recent rapid increases in technology development have become increasingly prevalent in education. As a result of online education resources, classroom teaching dynamics have begun to shift away from traditional lecture. In particular, flipping the classroom has become popular in higher education. Flipping the classroom consolidates standard lectures into at-home self-study modules, and utilizes class time for engaging students in critical thinking exercises. Some research suggests that this style of teaching has led to increased student satisfaction and higher exam scores. OBJECTIVES: The objective of this study is to compare flipped classroom modules to traditional lecture in PA and medical student didactic education. METHODS: This study is a crossover interventional study that includes first year PA students and second year medical students from Boston University. Students will be randomly assigned to either a control group or experimental group. Both groups will take three tests throughout the study: a pre-test prior to intervention, a test following the first week prior to crossover, and a final exam after crossover completion. Each exam will consist of 30 multiple choice questions and a Likert scale questionnaire assessing student satisfaction. The control group will be exposed to traditional lecture while the experimental group will be exposed to a flipped classroom module. Content will be identical between groups, and following module completion, the groups will crossover for exposure to opposing treatment. RESULTS: Each cohort’s exam scores will be evaluated based on mean score and standard deviation at all three time points. Additionally, Likert scale responses will be evaluated at all three time points. Values will be assessed to determine if a relationship between lecture style, exam scores, and student satisfaction exist. DISCUSSION: Results from this study will help to determine the significance of flipped classroom learning in medical education

    Star Formation History of a Young Super-Star Cluster in NGC 4038/39: Direct Detection of Low Mass Pre-Main Sequence Stars

    Get PDF
    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1" spectrum encompasses a physical region of ~90 pc and radii of super-star clusters are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr - 18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus we have directly detected PMS objects in an unresolved super-star cluster for the first time using a combination of population synthesis models and pre-main sequence tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young super-star clusters as well as an exploration of the star formation history of young UC HII regions.Comment: 26 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Revealing components of the galaxy population through nonparametric techniques

    Get PDF
    The distributions of galaxy properties vary with environment, and are often multimodal, suggesting that the galaxy population may be a combination of multiple components. The behaviour of these components versus environment holds details about the processes of galaxy development. To release this information we apply a novel, nonparametric statistical technique, identifying four components present in the distribution of galaxy Hα\alpha emission-line equivalent-widths. We interpret these components as passive, star-forming, and two varieties of active galactic nuclei. Independent of this interpretation, the properties of each component are remarkably constant as a function of environment. Only their relative proportions display substantial variation. The galaxy population thus appears to comprise distinct components which are individually independent of environment, with galaxies rapidly transitioning between components as they move into denser environments.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    Hdelta-Selected Galaxies in the Sloan Digital Sky Survey I: The Catalog

    Full text link
    [Abridged] We present here a new and homogeneous sample of 3340 galaxies selected from the Sloan Digital Sky Survey (SDSS) based solely on the observed strength of their Hdelta absorption line. These galaxies are commonly known as ``post-starburst'' or ``E+A'' galaxies, and the study of these galaxies has been severely hampered by the lack of a large, statistical sample of such galaxies. In this paper, we rectify this problem by selecting a sample of galaxies which possess an absorption Hdelta equivalent width of EW(Hdelta_max) - Delta EW(Hdelta_max) > 4A from 106682 galaxies in the SDSS. We have performed extensive tests on our catalog including comparing different methodologies of measuring the Hdelta absorption and studying the effects of stellar absorption, dust extinction, emission-filling and measurement error. The measured abundance of our Hdelta-selected (HDS) galaxies is 2.6 +/- 0.1% of all galaxies within a volume-limited sample of 0.05<z<0.1 and M(r*)<-20.5, which is consistent with previous studies of such galaxies in the literature. We find that only 25 of our HDS galaxies in this volume-limited sample (3.5+/-0.7%) show no evidence for OII and Halpha emission, thus indicating that true E+A (or k+a) galaxies are extremely rare objects at low redshift, i.e., only 0.09+/-0.02% of all galaxies in this volume-limited sample are true E+A galaxies. In contrast, 89+/-5% of our HDS galaxies in the volume-limited sample have significant detections of the OII and Halpha emission lines. We find 27 galaxies in our volume-limited HDS sample that possess no detectable OII emission, but do however possess detectable Halpha emission. These galaxies may be dusty star-forming galaxies. We provide the community with this new catalog of Hdelta-selected galaxies to aid in the understanding of these galaxies.Comment: Submitted to PASJ. Catalog of galaxies available at http://astrophysics.phys.cmu.edu/~tomo/ea

    Nitrogen Production in Starburst Galaxies Detected by GALEX

    Get PDF
    We investigate the production of nitrogen in star-forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8745 GALEX emission-line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the seven-band GALEX+SDSS photometry. We find that galaxies that have log (SFR/M_*) ≳ − 10.0 typically have values of log (N/O) ~ 0.05 dex less than galaxies with log (SFR/M_*) ≾ − 10.0 and similar oxygen abundances

    The Diverse Properties of the Most Ultraviolet Luminous Galaxies Discovered by the Galaxy Evolution Explorer

    Get PDF
    We report on the properties of a sample of ultraviolet luminous galaxies (UVLGs) selected by matching the Galaxy Evolution Explorer (GALEX) Surveys with the Sloan Digital Sky Survey Third Data Release. Out of 25362 galaxies between 0.02x10^10 L_solar at 1530 Angstroms (observed wavelength). The properties of this population are well correlated with ultraviolet surface brightness. We find that the galaxies with low UV surface brightness are primarily large spiral systems with a mixture of old and young stellar populations, while the high surface brightness galaxies consist primarily of compact starburst systems. In terms of the behavior of surface brightness with luminosity, size with luminosity, the mass-metallicity relation, and other parameters, the compact UVLGs clearly depart from the trends established by the full sample of galaxies. The subset of compact UVLGs with the highest surface brightness (``supercompact UVLGs'') have characteristics that are remarkably similar to Lyman Break Galaxies at higher redshift. They are much more luminous than typical local ultraviolet-bright starburst galaxies and blue compact dwarf galaxies. They have metallicities that are systematically lower than normal galaxies of the same stellar mass, indicating that they are less chemically evolved. In all these respects, they are the best local analogs for Lyman Break Galaxies.Comment: Fixed error in ObjID column of Table 1. 30 pages, 12 figures. Accepted for the GALEX special issue of ApJS. Abstract abridge

    The Origin of the 24-micron Excess in Red Galaxies

    Get PDF
    Observations with the Spitzer Space Telescope have revealed a population of red-sequence galaxies with a significant excess in their 24-micron emission compared to what is expected from an old stellar population. We identify 900 red galaxies with 0.15<z<0.3 from the AGN and Galaxy Evolution Survey (AGES) selected from the NOAO Deep Wide-Field Survey Bootes field. Using Spitzer/MIPS, we classify 89 (~10%) with 24-micron infrared excess (f24>0.3 mJy). We determine the prevalence of AGN and star-formation activity in all the AGES galaxies using optical line diagnostics and mid-IR color-color criteria. Using the IRAC color-color diagram from the IRAC Shallow Survey, we find that 64% of the 24-micron excess red galaxies are likely to have strong PAH emission features in the 8-micron IRAC band. This fraction is significantly larger than the 5% of red galaxies with f24<0.3 mJy that are estimated to have strong PAH emission, suggesting that the infrared emission is largely due to star-formation processes. Only 15% of the 24-micron excess red galaxies have optical line diagnostics characteristic of star-formation (64% are classified as AGN and 21% are unclassifiable). The difference between the optical and infrared results suggest that both AGN and star-formation activity is occurring simultaneously in many of the 24-micron excess red galaxies. These results should serve as a warning to studies that exclusively use optical line diagnostics to determine the dominant emission mechanism in the infrared and other bands. We find that ~40% of the 24-micron excess red galaxies are edge-on spiral galaxies with high optical extinctions. The remaining sources are likely to be red galaxies whose 24-micron emission comes from a combination of obscured AGN and star-formation activity.Comment: ApJ, accepted; 11 pages, 7 figures; corrected reference to IRAC Shallow Survey in abstrac

    Local Lyman Break Galaxy Analogs: The Impact of Massive Star-forming Clumps on the Interstellar Medium and the Global Structure of Young, Forming Galaxies

    Get PDF
    We present HST UV/optical imaging, Spitzer mid-IR photometry, and optical spectroscopy of a sample of 30 low-redshift (z=0.1-0.3) galaxies chosen from SDSS/GALEX to be accurate local analogs of the high-z Lyman Break Galaxies. The Lyman Break Analogs (LBAs) are similar in mass, metallicity, dust, SFR, size and gas velocity dispersion, thus enabling a detailed investigation of processes that are important at high-z. The optical emission line properties of LBAs are also similar to those of LBGs, indicating comparable conditions in their ISM. In the UV, LBAs are characterized by complexes of massive star-forming "clumps", while in the optical they most often show evidence for (post-)mergers/interactions. In 6 cases, we find an extremely massive (>10^9 Msun) compact (R~100 pc) dominant central object (DCO). The DCOs are preferentially found in LBAs with the highest mid-IR luminosities and correspondingly high SFRs (15-100 Msun/yr). We show that the massive SF clumps (including the DCOs) have masses much larger than the nuclear super star clusters seen in normal late type galaxies. However, the DCOs have masses, sizes, and densities similar to the excess-light/central-cusps seen in typical elliptical galaxies with masses similar to the LBA galaxies. We suggest that the DCOs form in present-day examples of the dissipative mergers at high redshift that are believed to have produced the central-cusps in local ellipticals. More generally, the properties of the LBAs are consistent with the idea that instabilities in a gas-rich disk lead to very massive star-forming clumps that eventually coalesce to form a spheroid. We speculate that the DCOs are too young at present to be growing a supermassive black hole because they are still in a supernova-dominated outflow phase.Comment: The Astrophysical Journal, In Press (22 pages, 16 figures). For the full version with high-resolution colour figures, see: http://www.mpa-garching.mpg.de/~overzier/Overzier_LBApaper09.pd

    K+A Galaxies as the Aftermath of Gas-Rich Mergers: Simulating the Evolution of Galaxies as Seen by Spectroscopic Surveys

    Full text link
    Models of poststarburst (or "K+A") galaxies are constructed by combining fully three-dimensional hydrodynamic simulations of galaxy mergers with radiative transfer calculations of dust attenuation. Spectral line catalogs are generated automatically from moderate-resolution optical spectra calculated as a function of merger progress in each of a large suite of simulations. The mass, gas fraction, orbital parameters, and mass ratio of the merging galaxies are varied systematically, showing that the lifetime and properties of the K+A phase are strong functions of merger scenario. K+A durations are generally less than ~0.1-0.3 Gyr, significantly shorter than the commonly assumed 1 Gyr, which is obtained only in rare cases, owing to a wide variation in star formation histories resulting from different orbital and progenitor configurations. Combined with empirical merger rates, the model lifetimes predict rapidly-rising K+A fractions as a function of redshift that are consistent with results of large spectroscopic surveys, resolving tension between the observed K+A abundance and that predicted when one assumes the K+A duration is the lifetime of A stars (~1 Gyr). The effects of dust attenuation, viewing angle, and aperture bias on our models are analyzed. In some cases, the K+A features are longer-lived and more pronounced when AGN feedback removes dust from the center, uncovering the young stars formed during the burst. In this picture, the K+A phase begins during or shortly after the bright starburst/AGN phase in violent mergers, and thus offers a unique opportunity to study the effects of quasar and star formation feedback on the gas reservoir and evolution of the remnant. Analytic fitting formulae are provided for the estimates of K+A incidence as a function of merger scenario.Comment: 26 pages, 13 figures; ApJ; minor changes to reflect accepted versio

    Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    Full text link
    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of intervening absorbers and AGN-driven outflows; conclusions unchange
    corecore